2024 年 1 月寒风吹彻
半导体器件原理 Summary as of 1.8

半导体器件原理 Summary as of 1.8

2025 年 10 月 30 日

Formulas and concepts till 1.8 of the Principle of Semiconductor Devices course. Mainly formulas though.


Some Important Values

For intrinsic silicon at room temperature:

kT0.026eVEg1.1eVni1.45×1010cm31010cm3VON0.7V

Carrier Concentration

Fermi-Dirac Distribution

fe(E)=11+eEEFkTfh(E)=11+eEFEkT

Boltzmann Approximation

kT0.026eV, when T=25C

For electrons, when EEFkT:

fe(E)eEEFkT

For holes, when EFEkT:

fh(E)eEFEkT

Equivalent DoS

NC,NVT32

In intrinsic semiconductor:

ni=NCeECEFkTpi=NVeEFEVkTni=pini2=np=NCNVeEgkT

Doping

  • N-type: Donor dopants, nND, EC>ED

    • ECEF=kTlnNCND
    • EFEi=kTlnnni
  • P-type: Acceptor dopants, pNA, EA>EV

    • EFEV=kTlnNVNA
    • EiEF=kTlnpni

PN Junction Formation

Built-in Potential

qVbi=EipEin=EipEF+(EFEin)=kTlnNANDni2Vbi=kTqlnNANDni2

Depletion Region Width:

NAxp=NDxnEmax=qεSiNAxp=qεSiNDxnVbi=qNAxp22εSi+qNDxn22εSi{xp=2εSiVbiqNDNA(NA+ND)xn=2εSiVbiqNAND(NA+ND)xd=2εSiVbiq(1NA+1ND)

Ideal PN Junction Equation

xd=2εSi(VbiVA)q(1NA+1ND)

And the heavily doped side contribution can be neglected.

ID=I0(eqVAkT1)I0=q(Dnnp0Ln+Dppn0Lp)

Carrier Motions

Minority & Majority Carriers

  • For minority carriers, the diffusion current dominates
  • For majority carriers, the drift current dominates

Short Diode

Wn<Lp and Wp<Ln, no recombination in the neutral regions.

Minority carrier distribution is a straight line, (diffusion) current is constant across the junction.

Jn,diff=qDnnp0Wp(eqVAkT1)Jp,diff=qDppn0Wn(eqVAkT1)

Long Diode

Recombination happen in the neutral regions.

Recombination increases the current.

Real PN Junction Characteristics

Non-ideal Effects

  • When VA is small, recombination makes current larger than ideal
  • When VA is large, high-level injection causes accumulation of majority carriers near the depletion region, driving them against the current flow
    • Always takes place in the lightly doped side

Turn-on

Depletion region disappears when VA is increased beyond Vbi, and the diode becomes a resistor.

Breakdown

Both mechanisms are somehow related to maximum electric field in the depletion region.

|Emax|=2qVbiεSiNANDNA+ND(which happens to)=2Vbixd

Temperature Effects

  • Both sides behave more like intrinsic semiconductor
  • Vbi and VON decreases

PN Junction Switching and Model

Capacitance

  • Depletion region capacitance (zero bias/reverse bias)

    Cj=εSiWd=εSi2εSi(VbiVA)q(1NA+1ND)=Cj01VAVbi
  • Diffusion capacitance (forward bias)

    Qdiff=q2(Lnnp0+Lppn0)eqVAkTCdiff=dQdiffdVA=qkTq2(Lnnp0+Lppn0)eqVAkT=QdiffVth

Large Signal Model

A parallel combination of a current source, a depletion capacitance, and a diffusion capacitance, then series with a resistance.

ID=I0(eqVAkT1)(Current Source)Cj=Cj01VAVbi(Depletion Capacitance)Cdiff=QdiffVth(Diffusion Capacitance)

Small Signal Model

gd(Vb)=dIDdVA|VA=Vb=qkTI0eqVbkTqkTID(Vb)(if we drop -1 in ID)=ID(Vb)Vth

文件历史

feat: add dynamic lang updates 9e99152
2025 年 11 月 21 日 08:18djdjz7
content: fix build errors on the summary d8234e7
2025 年 10 月 30 日 15:08djdjz7
content: principle of semi devices, summary as of 1.8 7675f30
2025 年 10 月 30 日 13:32djdjz7
© 2023 - 2025
Unless otherwise stated, text contents are licensed under CC BY-NC 4.0, and codes are licensed under MIT.
Images may be subject to separate licenses, see the image captions for details if applicable.